6,536 research outputs found

    Symmetry properties of Penrose type tilings

    Full text link
    The Penrose tiling is directly related to the atomic structure of certain decagonal quasicrystals and, despite its aperiodicity, is highly symmetric. It is known that the numbers 1, −τ-\tau , (−τ)2(-\tau)^2, (−τ)3(-\tau)^3, ..., where τ=(1+5)/2\tau =(1+\sqrt{5})/2, are scaling factors of the Penrose tiling. We show that the set of scaling factors is much larger, and for most of them the number of the corresponding inflation centers is infinite.Comment: Paper submitted to Phil. Mag. (for Proceedings of Quasicrystals: The Silver Jubilee, Tel Aviv, 14-19 October, 2007

    Hierarchical freezing in a lattice model

    Full text link
    A certain two-dimensional lattice model with nearest and next-nearest neighbor interactions is known to have a limit-periodic ground state. We show that during a slow quench from the high temperature, disordered phase, the ground state emerges through an infinite sequence of phase transitions. We define appropriate order parameters and show that the transitions are related by renormalizations of the temperature scale. As the temperature is decreased, sublattices with increasingly large lattice constants become ordered. A rapid quench results in glass-like state due to kinetic barriers created by simultaneous freezing on sublattices with different lattice constants.Comment: 6 pages; 5 figures (minor changes, reformatted

    A finite-temperature liquid-quasicrystal transition in a lattice model

    Full text link
    We consider a tiling model of the two-dimensional square-lattice, where each site is tiled with one of the sixteen Wang tiles. The ground states of this model are all quasi-periodic. The systems undergoes a disorder to quasi-periodicity phase transition at finite temperature. Introducing a proper order-parameter, we study the system at criticality, and extract the critical exponents characterizing the transition. The exponents obtained are consistent with hyper-scaling

    Self-Assembly of Monatomic Complex Crystals and Quasicrystals with a Double-Well Interaction Potential

    Full text link
    For the study of crystal formation and dynamics we introduce a simple two-dimensional monatomic model system with a parametrized interaction potential. We find in molecular dynamics simulations that a surprising variety of crystals, a decagonal and a dodecagonal quasicrystal are self-assembled. In the case of the quasicrystals the particles reorder by phason flips at elevated temperatures. During annealing the entropically stabilized decagonal quasicrystal undergoes a reversible phase transition at 65% of the melting temperature into an approximant, which is monitored by the rotation of the de Bruijn surface in hyperspace.Comment: 4 pages, 6 figures. Physical Review Letters, in Press (April 2007

    Thermodynamically Stable One-Component Metallic Quasicrystals

    Full text link
    Classical density-functional theory is employed to study finite-temperature trends in the relative stabilities of one-component quasicrystals interacting via effective metallic pair potentials derived from pseudopotential theory. Comparing the free energies of several periodic crystals and rational approximant models of quasicrystals over a range of pseudopotential parameters, thermodynamically stable quasicrystals are predicted for parameters approaching the limits of mechanical stability of the crystalline structures. The results support and significantly extend conclusions of previous ground-state lattice-sum studies.Comment: REVTeX, 13 pages + 2 figures, to appear, Europhys. Let

    Energy levels and their correlations in quasicrystals

    Full text link
    Quasicrystals can be considered, from the point of view of their electronic properties, as being intermediate between metals and insulators. For example, experiments show that quasicrystalline alloys such as AlCuFe or AlPdMn have conductivities far smaller than those of the metals that these alloys are composed from. Wave functions in a quasicrystal are typically intermediate in character between the extended states of a crystal and the exponentially localized states in the insulating phase, and this is also reflected in the energy spectrum and the density of states. In the theoretical studies we consider in this review, the quasicrystals are described by a pure hopping tight binding model on simple tilings. We focus on spectral properties, which we compare with those of other complex systems, in particular, the Anderson model of a disordered metal.Comment: 15 pages including 19 figures. Review article, submitted to Phil. Ma

    A Tale of Two Tilings

    Full text link
    What do you get when you cross a crystal with a quasicrystal? The surprising answer stretches from Fibonacci to Kepler, who nearly 400 years ago showed how the ancient tiles of Archimedes form periodic patterns.Comment: 3 pages, 1 figur
    • …
    corecore